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Abstract

Background: Spaced-seeds, i.e. patterns in which some fixed positions are allowed to be wild-cards, play a crucial
role in several bioinformatics applications involving substrings counting and indexing, by often providing better
sensitivity with respect to k-mers based approaches. K-mers based approaches are usually fast, being based on
efficient hashing and indexing that exploits the large overlap between consecutive k-mers. Spaced-seeds hashing is
not as straightforward, and it is usually computed from scratch for each position in the input sequence. Recently, the
FSH (Fast Spaced seed Hashing) approach was proposed to improve the time required for computation of the spaced
seed hashing of DNA sequences with a speed-up of about 1.5 with respect to standard hashing computation.

Results: In this work we propose a novel algorithm, Fast Indexing for Spaced seed Hashing (FISH), based on the
indexing of small blocks that can be combined to obtain the hashing of spaced-seeds of any length. The method
exploits the fast computation of the hashing of runs of consecutive 1 in the spaced seeds, that basically correspond to
k-mer of the length of the run.

Conclusions: We run several experiments, on NGS data from simulated and synthetic metagenomic experiments, to
assess the time required for the computation of the hashing for each position in each read with respect to several
spaced seeds. In our experiments, FISH can compute the hashing values of spaced seeds with a speedup, with respect
to the traditional approach, between 1.9x to 6.03x, depending on the structure of the spaced seeds.
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Background
k-mers counting, indexing and searching are fundamen-
tal operations at the very basis of many bioinformatics
tools. A most notable example is their exploitation on
sequence similarity search for which the “hit-and-extend”
method introduced by BLAST [1] led to a revolution-
ary fast and sensitive approach for local alignment. In
the “hit” step exact matches of k-mers (k = 11 for
DNA) between two sequences are detected. Next, poten-
tial candidates are extended to obtain a local alignment
with high statistical significance. BLAST has long been
one of the most used tools for the analysis of omics
sequences.
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k-mers profiles are also widely used in alignment-free
techniques [2] for the definition of statistical scores for
sequence comparison [3, 4], finding application on a broad
range of bioinformatics problems (e.g. [5–13]), and push-
ing the development and usage of time and space efficient
algorithms and data structures for k-mer counting and
indexing (e.g. [14–18]).

Although the matching of contiguous k-mers is largely
used in sequence analysis, the use of not consecutive
matches, i.e. spaced seeds, can lead in principle to more
sensitive results [19]. This is because spaced seeds offer
the advantage, with respect to k-mers, of considering
positions that are not consecutive, hence statistically less
dependent. On the other side, the problem of max-
imizing the spaced seeds sensitivity is known to be
NP-hard [20]. The design of effective spaced seeds has
been addressed in several studies [21–24]. Nowadays,
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spaced seeds have replaced traditional k-mers based
approaches in the design of state-of-the-art solutions
to several problems that involve sequence comparison.
Among others we can enlist: phylogenetic tree reconstruc-
tion [25], protein classification [26], mapping of reads [27],
multiple sequence alignment [28], metagenomics binning
and classification [29–31]. The literature on spaced seeds
is vast, and we refer the interest reader to [32] for a
survey.

Several routine operations on large scale sequence anal-
ysis, including building and querying indexes, and search-
ing for similarity among sequences, are based on k-mers
counting. In order to speed-up k-mers counting, hash-
ing is often used. In fact, hashing consecutive k-mers is
fast and simple, since the hash of a k-mer starting at
position i can be computed from the hash of the k-mer
at position i − 1 with few operations, since they share
k − 1 symbols [33].

Unfortunately, this property no longer holds for spaced
seeds, due to the presence of “don’t care” positions, lead-
ing to a slowdown of the whole analysis. A good example
of this effect is the metagenomic read classifier Clark [10].
Its spaced seed counterpart, Clark-S [31], has a better clas-
sification quality, but a drop from 3.5M to 200k reads per
minute on classification rate with respect to Clark. Slow
downs when using spaced seeds has also been shown in
[26, 27, 29].

The problem of speeding up the computation of spaced
seed hashing for each position in a given sequence was
recently addressed in [34, 35] where FSH, an approach
based on spaced seed self-correlation, was proposed
reporting a speed-up of 1.5x, on average, with respect
to the standard way to compute spaced seed hashing. In
this paper we address the same problem, considering the
Rabin-Karp rolling hash.

The novel approach we present here, FISH, is based on
the decomposition of the spaced seed mask into blocks
of consecutive 1s. These blocks represent contiguous
matches, i.e. k-mers of the specified length. Since the
hashing of k-mers is a very fast operation, we reduced the
problem of spaced seed hashing to the problem of hash-
ing its k-mer components and then combined them in
order to obtain the hashing of the complete spaced seed.
We performed a wide set of experiments, using several
spaced seeds, varying in terms of length and weight, and
NGS datasets with different read lengths. Our approach
proved to be faster than the standard approach, and also
of FSH. We extended our algorithm and experiments
also to the multiple spaced seed hashing framework,
obtaining an average speed-up with respect to standard
indexing of 6x.

In the next sections we will present our approach and
the results of our experiments, discussing the perfor-
mances of our approach under different settings.

Methods
In this section we start by recalling some formal defini-
tions about spaced seeds through the notation introduced
in [36], and then we will describe our algorithm to com-
pute the spaced seed hashing of each position in a given
input string, a fundamental step in many applications
[25–29, 31].

Fundamental concepts on spaced seeds
Definition 1 (Spaced seed.) A spaced-seed S (or just

a seed) is a binary string of length k, where the symbol
‘1’ requires a match in that position, while a symbol ‘0’
allows for “don’t care”. A spaced seed is characterized by its
length k and by its weight W < k, which is the number
of 1s in the string. A spaced seed always begins and ends
with a 1.

Definition 2 (The shape Q of a spaced seed.) The shape
Q of a spaced seed is the set of non negative integers that
correspond to the positions of the spaced seed where there
is a 1. The shape Q can describe a spaced seed completely:
the weight W is equal to |Q|, and its span (or length) s(Q)

is given by max Q + 1.

Definition 3 (The positioned shape i + Q.) Given any
integer i and shape Q, we define the positioned shape i + Q
as the set {i + k, k ∈ Q}.

Definition 4 (Q-gram.) For any position i in the string
x = x0x1 . . . xn−1, with 0 ≤ i ≤ n − s(Q), let us con-
sider the positioned shape i + Q = {i0, i1, . . . , iW−1}, where
i0 < i1 < ... < iW−1. The Q-gram x[ i + Q], starting
at position i in x, is the string of length |Q| described by
xi0 xi1 . . . xiW−1 .

Example Let us consider the string x =
ACTGACTGGATTGAC, and a spaced seed
1101110011111. Then the shape of the spaced seed is
Q = {0, 1, 3, 4, 5, 8, 9, 10, 11, 12}, its weight is |Q| = 10
and its span is s(Q) = 13. The Q-gram x[ 0 + Q] is
given by the concatenation of the symbols that occur
at positions 0 + Q = {0, 1, 3, 4, 5, 8, 9, 10, 11, 12},
x[0 + Q] = ACGACGATTG:

Similarly the other Q-grams are given by the con-
catenations of the symbols at positions 1 + Q =
{1, 2, 4, 5, 6, 9, 10, 11, 12, 13}: x[ 1 + Q] = CTACTATTGA;
and 2 + Q = {2, 3, 5, 6, 7, 10, 11, 12, 13, 14}: x[ 2 + Q] =
TGCTGTTGAC.
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Now we can formally state our problem such as:

Problem 1 Let x = x0x1 . . . xi . . . xn−1 be a string of
length n, Q be a spaced seed, and h be a hash function that
maps a string into a binary codeword. Compute the hash
H(x, Q) for each Q-gram of the string x, following in the
natural order from the first position 0 to the last position
n − s(Q).

H(x, Q) = 〈h(x[ 0+Q] ), h(x[ 1+Q] ), . . . h(x[ n−s(Q)] )〉

Spaced seed hashing
The first step when computing the hash of a string defined
over an alphabet A is to encode it into a binary string.
For genomic sequences the simplest encoding consists
in the definition of a function encode which maps the
four nucleotides as follows: encode(A) = 00, encode(C) =
01, encode(G) = 10, encode(T) = 11. Given this map-
ping, we can compute the encodings of all symbols of the
Q-gram x[ 0 + Q]:

x[0+Q] A C G A C G A T T G
encodings 00 01 10 00 01 10 00 11 11 10

Here we focus on the efficient computation of the
Rabin-Karp rolling hash. In the case of DNA sequences
since |A| = 4 is a power of 2, the multiplications can
be implemented with a shift operation. More formally, for
any given position i of the string x = x0x1 . . . xn−1, we
define the hashing h(x[i + Q] ) of the Q-gram x[ i + Q] as:

h(x[i + Q] ) =
∨

k∈Q

[
(encode(xi+k) � (m(k) ∗ log2|A|)]

(1)

where m(k) = |{i ∈ Q, such thati < k}|, i.e. given a
position k in the spaced seed, m(k) holds the number of
1s to the left of k. Since each symbol is encoded with 2

bits, m(k) ∗ log2|A| gives the number of shifts to set the
encoding of the k-th symbol in the right position.

In Table 1 we report a step-by-step computation of
hashing value for the Q-gram x[ 0 + Q] (up to length
6 just for page width limits constrains). With respect
to the above example, the hashing value associated to
the Q-gram ACGACGATTG simply corresponds to the
list of encodings in Little-endian: 10111100100100100100.
The hashing values for the others Q-grams can be deter-
mined through the function h(x[i + Q] ) with a simi-
lar procedure. Following the above example the hash-
ing values for the Q-grams x[1 + Q] = CTACTATTGA
and x[2 + Q] = TGCTGTTGAC are, respectively,
00101111001101001101 and 10001011111011011011.

The Rabin-Karp rolling hash is very intuitive. However,
other hashing functions, that can be more appropriate
because they have some properties such as universality,
uniform distribution in the output space, and higher-order
independence [33], can be computed in a similar way. For
example, one could use the cyclic polynomial rolling hash
by replacing: shifts with rotations, OR with XOR, and the
function encode(·) in Eq. (1) with a seed table where the
letters of the DNA alphabet are assigned different random
64-bit integers.

Equation (1) can be directly used to address Problem 1
by applying it at each position in x. However, for each posi-
tion the computation of the hashing function h(x[ i + Q] )

requires to extract and encode a number of symbols
that is equal to the weight of the seed |Q| or, in other
words, each symbol of x is read and encoded into the
hash |Q| times. Therefore this solution can be very
time consuming.

Computing spaced seed hashing with block indexing
In the following we describe our contribution for the
computation of hashing values through Fast Indexing of
Spaced seeds Hashings (FISH). Let Q = {i1, i2, . . . ik} be a
spaced seed. It can be viewed as a series of runs of 1s, or
unit blocks, interspersed with runs of 0s. First, we disas-

Table 1 Step-by-step computation of the encoding of the prefix of length 6 of the Q-gram x[0+Q] in little-endian notation using Eq. (1)

0 1 2 3 4 5 6 7 8 9

x A C T G A C T G G A

Q 1 1 0 1 1 1 0 0 1 1

m 0 1 2 2 3 4 4 5 5 6

Shifted-
encodings

00 01 � 2 10 � 4 00 � 6 01 � 8 10 � 10

0100

100100

00100100

0100100100

100100100100
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Fig. 1 The hashing of each unit block in the spaced seed is looked up in the corresponding length k-mer table

semble Q into its constituents unit blocks and we define
the set B of starting positions of the unit blocks as:

B = {0} ∪ {
ij ∈ Q \ {0} such that ij − ij−1 > 1

}

Given B = {b1, b2, . . . , bt}, let BL = {l1, l2, . . . , lt} be
the (ordered) set of the lengths corresponding to each
unit block. To compute the hashing of a spaced seed on a
sequence x of length n, the FISH algorithm will scan x for
fast hashing of l-mers whose lengths are in BL. For each
length l ∈ BL an array Tl of length n−l+1 is built where at
position i the hash of the l-mer x[i, i+ l −1] is stored. This
pre-processing is very fast, as it can exploit the large over-
lap (l−1 symbols) between consecutive l-mers in order to
compute the hashing of consecutive positions in constant
time.

Then, to compute the hash of the Q-gram identified
by the position shape i + Q, we proceed as follows.
For each unit block bj of length lj we look up at the
array Tlj , and specifically to the value stored at posi-
tion i + bj. Let hj be such value. The hashing of the
Q-gram is then computed by shifting hj of 2 × m(bj)
positions to the left. This process is repeated for all unit
blocks and the contributions of each block are summed
(bitwise OR).

Example 1 Let us consider again the string x = AC
TGACTGGATTGACTCC and the spaced seed S = 1101
110011111, with associated shape Q = {0, 1, 3, 4, 5, 8,
9, 10, 11, 12 }, m = {0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10}, and
blocks with starting positions B = {0, 3, 8}, and lengths
BL = {2, 3, 5}. To compute the hashing of the Q-gram
x[ 0 + Q] we must look up at T2[ 0] to retrieve the
value of h1 = 0100, at T3[ 3] to retrieve the value of
h2 = 010010, and at T5 to retrieve h3 = 1011110010
(see Fig. 1).

Then the hashings need to be combined to obtain the
final hash value of x[0 + Q]:

H(ACGACGATTG) = (h1 �2 · m(b1))∨(h2 �2 · m(b2))∨(h3 �2·m(b3))

= (0100 � 0) ∨ (010010 � 4) ∨ (1011110010 � 10)

= 10111100100100100100

Computing multiple spaced seed hashing with block
indexing
In some applications (for example [25, 29–31, 37]) using
several spaced seeds increases the sensitivity of the results.
In such a context, the FISH algorithm can be further
exploited to improve the speed up with respect to the
computation of the Q-grams hashing of each spaced seed
separately. In fact, if two spaced seeds share a unit block
of the same length l, we will need to compute the hashing
of the l-mers of the input string just once, and then access
the corresponding array Tl when computing the full hash
of Q-grams for the two different spaced seeds.

Table 2 The nine spaced seeds used in the experiments
grouped according to their type

Spaced seeds maximizing the hit probability [31]

Q1 1111011101110010111001011011111

Q2 1111101011100101101110011011111

Q3 1111101001110101101100111011111

Spaced seeds minimizing the overlap complexity [23]

Q4 1111010111010011001110111110111

Q5 1110111011101111010010110011111

Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity [21]

Q7 1111011110011010111110101011011

Q8 1110101011101100110100111111111

Q9 1111110101101011100111011001111
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Table 3 Number of reads and average lengths for each of the
dataset used in our experiments

Datasets Number of reads Avg. read length

S6 1426457 80

S7 3307100 80

S9 4468336 80

S10 9981172 80

L5 1016418 80

L6 1182178 80

HiSeq 9989713 91

simBA5 5439738 100

MixK1 9629886 101

MixK2 7149900 101

MiSeq 9933556 131

R7 290473 702

R8 374576 715

R9 588256 715

More formally, let Q1, Q2, . . . Qn be n spaced seeds. Let
BQi

L = {lQi
1 , lQi

2 , , . . . , lQi
ti } be the set of lengths of the unit

blocks of the spaced seed with shape Qi, for i = 1, . . . , n.
Let B̃L = ∪n

i=1BQi
L be the superset of all different unit block

lengths among the spaced seeds we are considering. We
will compute the hashing tables of each l-mer, with l ∈ B̃L,
in the input string x just once. These tables will be used
for all spaced seeds so that if two spaced seeds share a
unit block, the corresponding table will be computed only
once. When we need to reconstruct the hash for the Q-
gram intercepted by the spaced seed Qi at position j in x,
i.e. x[ j + Qi], FISH will proceed as before by looking up
at the Tl corresponding to the lengths of the blocks in the
spaced seed Qi.

Results
In this section we will discuss the time performance of the
block indexing based approach FISH, presented here, and
the FSH approach [35]. The speed ups are computed with
respect to the time needed for the standard computation
of spaced seeds hashing, where the hashing of each k-mer
intercepted by the spaced seed is computed separately for
each position in the input string as in Eq. (1).

Spaced seeds and datasets description
In order to evaluate the performance of FISH we design a
series of tests with different type of spaced seeds and vari-
ous reads datasets. For our experiments we used the same
spaced seeds and datasets used in [34] covering three
types of spaced seeds: i) maximizing the hit probability
[31]; ii) minimizing the overlap complexity [23]; and iii)
maximizing the sensitivity [21].

In line with previous studies, we evaluate nine spaced
seeds, three for each category. The spaced seeds used for
this test are shown in Table 2. All spaced seeds Q1 − Q9
(see Table 2) have the same weight |Qi| = 22 and length
L = 31.

In order to evaluate FISH under different conditions, we
build several sets of spaced seeds with rashbari, with dif-
ferent lengths from 16 to 45 and weights from 11 to 32. A
complete list of spaced seeds is reported in the Additional
file 1: Tables S1–S5.

As for the reads data to be scanned and hashed,
we consider a series of datasets of metagenomic reads
already used for classification and binning [9, 38]. We use
synthetic metagenomic datasets (MiSeq, HiSeq, MK_a1,
MK_a2, and simBA5) as well as simulated metagenomic
datasets (S,L,R). The datasets (Rx) simulate single-end
long reads from Roche 454, with length 700 bp, and
sequencing error of 1%. While the datasets (Sx and Lx)
are paired-end reads of short length (80 bp) follow-
ing Illumina error profile. The synthetic metagenomic

Fig. 2 The speedup of FISH and FSH with respect to the standard hashing computation, as a function of the spaced seeds used in our experiments
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Fig. 3 Details of the speedup of FISH on each of the considered datasets, ordered by reads length

datasets are built from real shotgun reads of differ-
ent species to mimic various microbiome communities.
Furthermore, for the comparison of spaced seeds with
different weights and lengths, we generated datasets of
increasing read length of 100, 200, and 400 bp with Mason
simulator [39] according to Illumina error profile. A sum-
mary of the datasets used in this study is reported in
Table 3. All methods have been tested on a laptop with 16
GB RAM and Intel i74510U cpu at 2GHz.

Analysis of speed up
In the first test we compare the performance of FISH
with FSH in terms of speed up with respect to the stan-
dard hashing computation. In Fig. 2 we report the average
speed ups on all datasets, for each spaced seed, obtainable
with FISH and FSH approaches.

We can observe that FISH is faster than FSH indepen-
dently on the spaced seed considered. As a reference, the
standard approach (Eq. (1)), requires about 17 minutes to

perform the hashing of a seed on all datasets. The two
methods FISH and FSH can compute the hashings in 8.5
and 12 minutes respectively, with a speed up of 2 (FISH)
and 1.46 (FSH). We noticed that the speed up can vary
between spaced seeds, in fact FSH obtains speed ups in
the range [1.18-1.58] and FISH in the interval [1.89-2.16].
As expected, the speed up depends on the structure of
spaced seed to be hashed, however FSH seems to be highly
dependent on the structure with a variation of 0.4 between
minimum and maximum speed up, instead FISH varia-
tion is only 0.27. In summary, in this first experiments
FISH in not only faster, but also less dependent of the
spaced seed.

To have a better understanding of the behavior of FISH
on all datasets, Fig. 3 reports the performance of FISH for
each datasets.

We noticed that the seeds with the best performance
are Q2 and Q3, the top two lines in Fig. 3. However,
all spaced seeds show a similar behavior across different

Fig. 4 Details of the speedup of FISH and FSH on the spaced seed Q7 for each of the considered datasets, ordered by reads length
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Fig. 5 Speedup of FSH and FISH with the multiple spaced seeds hashing (dark green and dark blu) and with each spaced seed hashed
independently (light green and light blu)

datasets. The maximum difference between the best seed,
top line, and the worse seed, bottom line, remains con-
stant for each datasets confirming the robustness of FISH.
Another interesting observation is that the speed up tends
to increase with the reads length and it reaches the max-
imum performance on the long read (see R7, R8 and R9).
A possible reason for this behavior is that these datasets
contain long reads, and the impact of the initial transient
is reduced.

In Fig. 4 we report the performance of FISH and FSH for
spaced seed Q7 in details over all datasets.

The results are in line with the above observations and
FISH has better speed up across all datasets. However, for
FISH the improvement on long reads datasets is substan-
tial with respect to FSH.

Multiple spaced seed hashing
Several tools exploit the power of spaced seeds by using
a combination of such patterns, in order to further
improve their performances in terms of quality. There-
fore, the simultaneous computation of the hashing of

Fig. 6 Details of the time speedup of FISH and FSH for the multiple spaced seeds hashing on different datasets
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Fig. 7 The speedup of FISH and FSH as a function of the spaced seeds density (L=31 and W varies)

several spaced seeds at once can come very useful in such
contexts.

Figure 5 reports the speed up of FISH and FSH when
computing the hash of spaced seed independently (light
blu and light green), and simultaneously as multiple
spaced seeds (dark blu and dark green).

The use of multiple spaced seeds simultaneously
increases the speed up of both methods. However, FSH
improves from 1.45 to 1.49 whereas FISH from 2.48 to
6.03. On this experiment the advantage of FISH is gain
substantial, where it can hash multiple spaced seeds 4
times faster than FSH. A detailed analysis of the perfor-
mance on different datasets can be found in Fig. 6. Simi-
larly to Fig. 3 we can observe that the speed up increases
on long reads datasets.

The impact of reads length and spaced seeds weight
These experiments aim at posing in evidence the impact
on the speed up of reads length and spaced seeds den-
sity. We generated with rasbhari [22] different sets of nine

spaced seeds with lengths from 16 to 45 and weights in the
range from 11 to 32, see the Additional file 1: Tables S1-S5.

In Fig. 7 we compare the speedup of FISH and FSH on
spaced seeds with the same length L = 31, while varying
the weight W. It can be observed that the speed up of both
FISH and FSH increases as the weight W increases. A pos-
sible explanation is the following. If a spaced seed has an
higher weight, then the ability of FISH to use the partial
hashes computed in the k-mers tables increases, and this
will results in a better speed up. This behavior is consis-
tent for both FISH and FSH, with the only exception of
the speedup of FISH on multiple spaced seeds with W=22
and L=31. These are the seeds used in the first experi-
ments and reported in Table 2. As opposed to the other set
of seeds that have been created all with same tool and min-
imizing overlap complexity, these seeds have been created
with different methods and thus they might expose more
overlaps, allowing for a better speedup. On the other hand
if the density W/L of spaced seeds weight with respect
to the length is low, than both FISH and FSH will have

Fig. 8 The speedup of our approach with respect to the standard hashing computation as a function of reads length (100, 200, 400) and the spaced
seeds weight W (all with the same density)
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poor performance. For example, if W/L is below 0.3 than
the standard hashing computation is in general faster. On
extreme cases, like the spaced seeds reported in [40], with
W = 12 and L = 112 FISH and FSH might not be of help.

In Fig. 8 we compare the speedup of FISH while vary-
ing the reads length, as a function of spaced seeds density
(fixed lenght L = 31). We can note that the speedup grows
with the reads length, a behavior observed also in Figs. 3
and 4.

Discussion
In this paper, we address the problem of hashing
genomic sequences through the lens of spaced seeds.
Spaced seeds are widely used in many tasks related to
sequence alignment and comparison. In fact, on the
problem of sequence similarity detection spaced seeds
have shown better performance than contiguous matches
[19]. While the hashing of contiguous matches can
be efficiently performed, for spaced seed this was not
the case.

We have already propose a method, called FSH [35], to
address this problem, but in this paper we introduce a new
tool, FISH, based on different strategies. FSH is based on
spaced seed auto-correlation and dynamic programming,
while FISH builds an index of partial common hashings
that can be reused multiple times.

In the results section, we have shown that FISH can
improve substantially the performance in terms of speed
up w.r.t. to FSH and the traditional hashing of spaced
seeds. This advantage is demonstrated on a number of
different settings, varying spaced seeds density and reads
length.

The speed up of FISH increases as the length of the
reads grows. This is a desirable property if we con-
sider that modern sequencing technologies can produce
longer reads. Also, if spaced seeds with high density
are required, FISH indexing strategy outperforms the
other methods. One interesting direction of investiga-
tion is the use of long and sparse spaced seed, i.e.
with very low density, for which FISH and FSH are
not suited. It remains an open problem if an alterna-
tive hashing method can further improve the hashing
computation, closing the gap with the fast hashing of
k-mers.

Conclusions
In this study we presented FISH, an indexing-based
approach for speeding up the computation of rolling
hash for spaced seeds. In our experiments FISH was able
to compute the hashing values of spaced seeds with a
speedup, on average and with respect to the traditional
approach, between 1.9× (single) to 6.03× (multi), depend-
ing on the structure of the spaced seeds and on the reads
length.

Additional file

Additional file 1: Supplementary Tables. (PDF 45.9 kb)
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